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Part Six : Digital Control Technique
Chap 21. Digital Computer Control

Microprocessor
Analog Controller -————-——--—-- > Digital Computer Control

Economically justifiable nowadays!

= Choice of correct system - single/multiple computer, microprocessor based
system, ...

* Role for digital computer system in Process Control

Passive application : Data acquisition (manipulation of process data)
Active application : Manipulation of the process by computer

<Distributed data processing>

Host Complex calculation

Supervisory control
Computer

[ ]
1 |

Front-end Front-end Data acquisition
Computer Computer
Interface Interface A/D, D/A, Transmitter,....amplifier...

4-20mA, 1-5V, 3-15psig

Process Process Process + sensor & actuator
Sensor Transmitter ADC DAC Transmitter Actuator
0-100C 4-20mA 12bit — — 4-20mA mA Valve opening
5-200psig 1-5V (0-4095) — Computer — 1-5V 1-5V Inverter output
0-50gpm 0-10V 16bit, . . . — — 0-10V  0-10V Displacement

0.04mV/C + Hold
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Chap 22. Sampling and Filtering of continuous Measurement

For data acquisition and control with computer based system, Specify
1. Sampling rate

2. S/N ratio, signal conditioning

3. control law

22.1. Sampling and Signhal Reconstruction

Sampling Period : A¢ (min)

f‘”_—_>§_'—"f“” Sampling Rate fs:il? (cycle / min)

{a) The sampler
Sampling freq. : Ws:% (rad / min)
Continuous Signal Sampled Signal
W e - ¥y

¥t}

gl

0O & t; t3 t4 t5 tg 17
(&) Continuous signal ¥(¢) and samples Time
{e) Sampled signal

* Impulse modulation : representation of sampled signal

digital signal -~ —  continuous signal
Signal Reconstruction
by DAC + Hold

xit)
whlt)
Y YH

At

Oty tp t3t5t5 » o o
Time —=
(6 Comparison of original signal, y(¢), and reconstructed signal, yult)
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Zero-order hold : y,= y, _, for ¢,_ <t<t,
1— —sA¢
H,(s)= i
<disadvantages of ZOH>

1. ZOH starts attenuating at freq.’s considerably below g

2. ZOH allows high freq.’s to pass although they are attenuated.
3. ZOH provides apparent time delay of one half of sampling period

Hig = 1=e ™ (ﬁgw) H(jo) = -2€ _j”A"‘/z(egA,t/z —e M)
s = o
_ _Arsin(0AH2)  —jesys
= NI €

o

HG*(jo) = J‘ Z HGo + jno ) GGo + jno ) = e Y2 G(s)

First-order hold: }H= Vo1 + (ﬁ)( Vo o1— y”_z) for ¢, < t<¢,
Hy(s)= JL'L&(J;e )’

— High order holds do not offer significant advantages for most control problem
— 7ZOH is most widely used.

Fractional order Hold: ;H = y,, + a(%) ( yn_1 yn_z) for ¢, < t<¢t,
Continuous Slewing: y, = y,_, + (t;At;‘;L)( Vo1 ¥,y for ¢ <<,
—sOt
H(9) =7, (15—

<Block diagram of digital control system>

Computer DAC
FmTTT T T T T N
I I I 3 Final
_+_>R Q Digital | ! M

| at controller i i’ Hold '—r" :Iirnr:;?—.ln Process .
L - l___

"

> B Measuring
l At E element
L

ADC: Analog to digital converter
DAC: Digital to analog converter

* Multirate sampling : use of different sampling period in the same system
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22.2. Selection of the Sampling Period

Selection of Af based on

1. # of measurement
2. view point of process control

<aliasing> --- foldover effect
Sampling rate must be large enough not to loose significant process
information

VWV WA

[a] Original signal and samples (e} Orlglnal signal and samples

= 4/3 samples per cycle) (. = 2 samples per cycle)
W veeeeeeeeees
(B) Apparent low frequency (d) Apparent low frequency
signal (aliasing) for signal (aliasing) for
fi = 4/3 samples per cycle fo = 2 samples per cycle

* Shannon’s Sampling theorem :
- Sampling freq. must be more than twice the freq. of sine wave(original signal)

"To be able to recover the continuous signal from its sampled
counterpart, the sampling freq. («s) must be at least twice the
highest freq. («¢) in the signal.”

= actual signal has all freq.

= it 1s impossible to recover the continuous signal from its sampled counterpart.

Aliasing can happen for the sampling of nonsinusoidal signal.
= Use anti—aliasing filter

<Selection of Sampling Period>

2

0
* S/N ratio = 023 (¢ : variance)

N

based on process variable type : Flow, level, temp...
based on open-loop system @ T, 6, Tmax, settling time, woc
= Selection of sampling period is less significant nowadays!
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22.3. Signal Processing and Data Filtering

Noise Sources : measurement device — filtering
electrical equipment — Shielding, grounding
process itself — filtering
(multiphase flow, mixing, turbulence, . . . )
filter = Transfer function !

<Analog filter>

v P ()= (1

T, - Filter time constant, y(#) * filtered value, x(¢) : measured value

- steady-state gain of the filter = 1

- exponential filter = Low pass filter = RC filter

- Before Sampling, use analog filter to reduced the noise
— prefiltering — anti—aliasing filter

- if 1, < 3 sec, use passive analog filter (R, C...)

if 1, > 3 sec, use active analog filter (op amplifier)

- Usually t,<01 7
- 77 should be selected so that (lowest noise freq. wy)

_2n _ 2
wN> wF_ TF > wmax_—r
max

<Digital filters>

* Exponential filter

X1y Xpoeeee : measured

Vo 1.V oo - filtered
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__ A¢ n Tr
Y= TF+Atxn TF+Atyn_l
| e Al —a
a= : filt tant = T,.=
T/t 1 ilter constan 7 a
v,=ax,+(1—a)y, , * Weighted summation!
= single exponential smoothing
a=1 : No filtering (1,=(), a=() : measurement is ignored (T,=o0),
<Double Exponential Filter>
-———>| Exp. filter |---——>| Exp. filter >
Xn Y Y
;}n:YO-xn—FY(l—(l) yn*l—i_(l_y) ;nfl
(}nflzyynfl"”(l*y) }nfz => yyﬁl:l ;y,flfj;y };;72)

¥ ¥

=vax,+(2—¥—a) y, ;| — (1-0)(1—Y) v, ,

Simplification : y=a

y,=0%,+2(1—a) y,_,—(1—-0)’y,_,

= better filtering for high freq. noise than exponential filter

<Moving average filter>

V= L ; J: moving window size
J ==+
n—1
yn—l_ ] i=;7 xl
yn:yn—l-l_Jj (x,—x,_p (recursive form) : low pass filter
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<Noise spike filter (rate of change filter)>

_ Xn Z:f | -xn_yn—l| SA-X .
yo=1{ vo_1—Dx if Vpo1— X, >Dx (4x : maximum change rate)
Voo 1+80 if oy, ,—x, {—Ax

= use for power glitch, instrument glitches, . . .

22.4. Comparison of Analog and Digital Filter
1. Digital filters can be easily tuned (programmed) to fit the process. They are also
easily modified.
2. Digital filters require the choice of sampling period

3. Digital filters affect the performance of computer system

4. Analog filters are particularly effective for elimination of high—frequency noise and
aliasing
22.5. Effect of filter selection on control system performance
filter — dynamic element — phase lag added — reduced stability limit
filter constant change — retune the controller!

To compensate the lag — D-mode in PID

Chap 23. Development of Discrete-Time Models

Discretize
Continuous—time model ————-—-—————- > Discrete—time model
ODE difference eqn.

23.1 Finite Difference Model

%&ﬁ =Ay,x) 'y = output, X = input

by finite difference approximation (backward difference),
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Y= Yu—1

Ar = f(y,_1,x,_,) - Calculated from known quantities

= ¥,=¥,1+ At f(v,-1x,-1) * Recurrence relation

* It can be used for numerical integration (Euler integration)

Use of forward difference

% ;yn%t—yn [ shifting index : n— (n—1)]

Interpolation formula : Jj{?& _ M@);G%%ELZ);M

23.2 Exact Discretization of Linear Systems

For Linear D.E. and piecewise constant input (during the sampling period)

av(h) - - x(8) =x(0) (constant)
T dt +y(t)—x(t)r .;C}(O):/:())C constian

Laplace Transform : s¥(s)— y(0)= ;TL Y(s)+ % JC%D

(9=~ A 0]

Inverse L. T. : WD =x0)(1—e ") +%0) e "
AN =x(0)(1—e ") +3(0) e *""

y(nb)=x((n—DAD(1—e *")+y((n—12He "
input (constant) initial condition

\/

ynze_At/Tyn_l-l-(l—e_At/T)xn_1 = Exact Solution!

23.3 Higher-Order System

Linear Differential eq. of order p —> linear Difference eq. of order p

SO K(t,s+1)
Gls) = X(s)  (tys+D(T9s+1)
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by exact discretization

Yot aryu—1tay,—o=0bx,—1+bx,_»

—AYt — Ayt — Ayt — Ayt
where g, =—¢ g Loas=e ‘e ’
b _K(]_—f—ld_—TL 7At/T1 lZ_—T(L 7At/‘[2)
1= T,—7T T,—1, €
1 2 17 %2

A L1
by = -8l 11+12) TQZ_T] — AT, TZ_ng — Aty
s =Kl e +T 1 ¢ T _1. €
17 "2 17 "2

If t,=1,and K = 1 — lst order filter type

for steady state = y =y, =y, s=v, xn,lzxn,zz}

1. fit continuous model --————-——-

(Existing simplified technique)

> discrete time model

2. fit discrete time model directly : Using optimization technique
. ~ |2
obj = 3T (v,— ¥,)

Levenburg-Marquadt method (in between Newton and Secant methods)

Chap. 24 Dynamic Response of Discrete-Time System

24.1. Z-Transform

Continuous Signal --———————- > Sampled Signal
f(t) fx(t)

Impulse sampling @ £ (f) = Zof( nADS(t— nldp)

(8§ : impulse or Dirac delta function)
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v
(Fndy= [ " F(Dap

ELFD]=F(9= 3 Andpe "

e ~ "5 ¢ real translation theorem for 5(t— nld

Let z2 esAt

Fo)2 ZLF (D)= 20;(%@2*"
2
= 217 (0)= X e "

>

. Z-transform

= Z-Transform is a special case of Laplace Transform

. Infinite series, but F(z) can be written in closed form if F(s) is a rational function

* Step function : S(8); findt) = 1 foralln =0 (f,=1—> A0T)=1)

For |#>1, F(z)=——

» 201 « e® >1 = s >0 to have finite values!

* Exponential function : A= Ce *
F(z) = ZOCe Tanbty —n

lf —andt _—1 < ]-7 F — #

le z (2) | — g1
— s > -a
(if a < 0, s should be s > -a >0 for e “e ™ to have limit if a<0)

Even for s <-a, the expression will be valid for all s using analytic extension
theorem.
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Properties of the Z-Transform

1. Linearity
Z [aifi(D)+ arfe(D] = a1 Z [A(D]+ ay Z [ /(D]
2. Real Translation Theorem
Z [At—idD]=z ' F(z) provided that A{) =( for t <0

pf)
Z [ At—idp] = gof(nﬂt—z'ﬁt) . (Let j=n—1i)

— ST b 2 (FGAD=0 for j<0)

==

i SYAGAD S i
z ]Z:Of(] Dz z 'F (2)

3. Complex Translation Theorem
Zle “AD]=F(ze™)

pf)
atf( t) 2 - anﬂt —-n

20 nAD) (ze ™) ~
= F(ze ™)

4. |nitial Value Theorem

lirrolf(nAt)Zlirg(l—zfl)F(z) for |z>1

5. Final Value Theorem

lim A nAf) = lirrll(l —z2 HF(z) for |z>1 provided A ocoAp) exists.

pf)
lim (1—2 " HF(2)=lim(1—2 " 3 fndp)z ™"

= lim[ A0) ALY = A0z "+{A20) — ALYz *+ .. )]
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=[A0) + A8 = A0) + A288) = AAD +... +A(0lf) — A (c0 —1)AY]

= flobt) = lim Ando)

Ex 24.1 For fit) = ¢, F(z) = ?

A nlf) = nAt F(z) = Zonﬂtzf”zﬂt Zon,z*"

oo

Let S(z) = Zonz -

n=

S(z)—z 'S(z2)=z '4+z *+z 3+ Z;Iﬁ—l

_ 1 _ 1 _ z
SA=" T T ) T (s )

A -1
= F(2) = AtS(z) = —— 12—
(1—z79)
Ex 242 Z(cosbt)=? Zle “cosbt) =7
Using Euler’s identity, cos(nbAf) =3(e ™+ ¢ /") where ;=V —1

F(z) =Z(cos b = ZO( cos nbAf)z~ "
— l — nbAt . —n — — jubAt . — n)
9 ( nZ::Oe z "+ ;06 z

(Z-transformation for exponential functions)
_1 1

1
B 2( 1—ez1 + l—ef"bﬂtzfl)
JbAt — jbAt
2—2( )z !

_ 1 - 2 -
P AL At
1_2( 2 )Z 1+Z 2
_ 1—2z 'cos bA?
1—2z ‘cos bAt+z 2
(Note : if bz%, then cos bAt =1 for t=A¢20¢...... nit
= which results T%I . step function
—Z

= f,=1 for all n — aliasing)

Using complex translation,

Z(e  “cosbt) = F(ze™)
1—z le = **cosbAt
1—2z le  “cosbAt+ z e 2N
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6. Modified Z-transform

(Special version of Z-transform for fractional time delays)

©=(N+0)At, (<0<1, N is a positive integer
A=) = 3. Anht—NAt—odp)z ™"

Let m=1-0 and kK = n-N-1. Then,

AR1=0)]= 3 fkdt+mbz F !

since AnlAf)=( for n <O — lower limit : k = 0

AR t—0)]=z V! gof(kAH mhpz "

F(z,m2z V7! Zof(kAH— mhhz ~*
=
* m : modified z-transform variable

= Ogata has table for modified z-transform.
theorems for initial value, complex translation, etc are valid

= it requires information between samples
-> Should know f(t)

Ex 24.3
Fz,m) =Z,(e ™) (N=0)

oo
_ _ Ap —
=z 1206 a(k+m) tZ k
=

[ele)
—amit_ — —akDt_ —k
=g "z lzoe sz
=

—ambt_ -1 1
am Z

=e 1_e—aAtZ—l
5!
For m=0 (o=1), F(z,m) =—"—"""5—7
1—e 4

— One unit time delay of ¢ %

Ex 24.4

Fo=—rm @0 {=Lct-—) lim /f (nd) =7
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1 1
F(Z):{;( 1—-z7' l—e_“wz_l)

hmf(nAt) lhm(l z I)( 1 — L )]

— — N _
lzl l—e @z 71

—A
a i abt

24.2. Inversion of Z-Transform

fW)=2z '1F)]

F(Z)Z%—;Z*I =r(1+pz "+ piz i+ ... +piz
1

= AnldH)=f,=r (p))"

Methods : a. Partial fraction expansion
b. Long Division
c. Contour integration

a) Partial fraction expansion

Vi(2)

suppose F(z)= Vo(2)
2

V, * kth order polynomial in 7! excluding delay zN
V, * mth order monic polynomial in z1

(No positive power of z in numerator including delay)

Vl(Z)
(1=piz DA =pz H....(0=p,2 Y

= T
(I1=pz ™) A=pzH 777 (U—puz

F(z) =

-y

1
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Use of Heaviside's rule with z:pr
= A — » —l[— 71 —1 4§ n I Vo
it =z eyt Tase It 2 gy o=y
Ty n
=r(p)"+ ry(p)"+ ...t + 7 (D) " ( (1_1)2_1): yip")

* For simple case of A nAf)=r p,"

Imagina
z-plane 1 ginary

/ /Q ax_ J@ O Real

]m m m Unit circle

Figure 24.2 Time-domain responses for different locations of the root of F(z).

R Yig -1® 1 ez
o l© @® The primary _ @ @
v 0 strip
l_@)_ _______ @2 _______ : 1,
T T e
Stable region:

DO —> @ s=jp Oga)séa)

1

= z=eMM=1.040A (<0< 5 O (half cycle)

£0< X 0N gi(%a)SAt) (0, =2n/Af) = (0 <0Ar<180  (Upper half cycle)

Imaginary axis — unit circle
1st and 4th quadrant — outside the unit circle
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2nd and 3rd quadrant — inside the unit circle
point (0,0) — point (1,0)

negative real axis — segment (0,1)

positive real axis — segment (1,00)

Re(s) = -0 — point (0,0)

Im(s) = +%jas with positive real— segment (-1,-o0)
Im(s) = +3jws with negative real — segment (-1,0)

- If s=04jo, z=e T = g coswAt+ jsinwAf

- For stability, o<((w=() in s-domain for all @, it spans the inside of the unit circle

0<p;<1, then
b =re “4re 4. 4re
where qi:—JA? Inp;

k> m (deg[Vi(2)] > deg[Va(2)]), then partial fraction expansion is not strictly applicable

Ex. 24.5

7F(2)} = 2 wh — 0.5z ith A=
[F(2)} when F(z) 1—2 501-052"D wi =1

Sol)

F(Z) — 81 S

1—z ! + 1—0.5z !

n=01-z "HFZ) 2:1:%.% -1

r=01-0.52 HF2) 2:052%5}22 -

L 1
1-z ' 1-0.5z "

where g, =—"A7 (D=0, gy=—"57 In(0.5)=0.693

fnd)=1—e "=1-(0.5)"
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b) Long Division

F(z) = 3 Andoz "
=A0)+ A2z "+ A28Dz PH.........

Ex 24.6 Solve for Ex24.5 using long division.

0.5z '+0.752 24+0.875z 2 +0.9375z2 *4+0.9687z °+ ...

1—1.52 '4+0.527% | 0.5z !

— Not in a closed form

c) Contour Integration

o)== | Fa)z"

where /7 should be appropriately specified.

' ) +iB
cf) For inverse Laplace transform, A{) = 42115]' }}m f‘ ’ e 'F(s)ds
—00 Ja — j]

- This method is seldom used in practice.

24.3. The Pulse Transfer Function

’

- Counterpart of Laplace domain "Transfer Function”

- iput @ x(x#AH) , X(2)
- output © y(#dy) , Y(z)

- Convolution integral

W= fotg(l‘— Tx*(T)at (g(t-7) : impulse response)
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where x*(T)= g‘bx(kAt)S(r— EAD

W) = [ 2t=) 3 (kA S(x — KD
— 3 g(t— ADx(RAD

for ¢t= nAt

Y(nbd) = gogmAf— FADx(EAD)

V()= 3 bz "= 3 S a(nbi— MDx(kB)z

n

(Let ;=n—4F)

oo

= ik > 2tz = Pkt
(g(idt) =0 for i<0)

- Zi)g( Az~ gxwﬁﬂ
=G(2) X(2)

G(z) & ZZG g(iAf)z ~% 1 Pulse Transfer function

Ex. 24.7

X(z) Y(z)

G(z) ? —_—
if G(s)ZTSP:ﬁ

Sol)

g)=r [G9)=HKc "

— S — nBT 7%_#
o) =% 317z 7= :

_A _
l—e 2z 71

Ex. 24.8 Find the Step response.

G(z) = —10.3225 ~1+0.57122 7 ( _ _—0.3225 1(1—177121)>
1—0.9744z ~'40.2231z ~* (14+az H(A+08z71
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Sol) for unit step input X(2)= ?Ij,
—z

Y() = GX(2) = G T

by long division

= —0.3225z ' —0.0665z 2+0.2568z *+0.5136z !
+0.6918z °+0.8082z ~®+0.8820z ~7+0.9277z ~®

(First two coefficients have negative sign — inverse response)

(e1) - ——0.3225+0.5712 _ _ 0.2487  _
Gain 2D = 029744 +0.2231 ~ 0.0256+0.2231 1

24.4. Relating Pulse Transfer function to difference Equation

A general difference equation :

aw,tay, 1+ ...... +a,y - m=bpx,tbx, 1t ....0,_,

(From real translation theorem : Z[y" =z 'Y (z) )

Y(2)(ag+az "t az it tae =X (byt+ bz tbz P+ +bzH
Y(z) b0+b1271+b2272....bk27k
X(2)  aqtaz 'taz t..a,z "

G(z) =

( by+0 — immediate effect of input on output)

* Physical Realizability
From above eq'n, ap=0 — physically realizable

(not depending on future inputs)

* The Zero-Order Hold (ZOH)

1— —sAt

H(s)= s
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Ex. 24.10
G(s)= Ts-lﬁ . difference equation model for ZOH plus first-order process
Sol)
__ —sht
HOGE == 0
=<l_¥)_e—sﬂt<l_¥)
s stl/t s stl/t

HG(z) =ZLH()G(s)]=ZA 2 'TH(HG()]
:( 1 1 )_Z 71( 1 1

1—z '} 1—e Mz 71
oz 'Q=e*

— e
1—e "Mz 71

-1
Let g a7, X2 _ _ U=a)z
€ a e X(Z) HG(Z) 1_ alz —1

= yn_alynflz(l_al)x n—1

* HG(2)=ZH()G()]=1—-2z"" Z ﬁ\(;ﬁ]
HG(2)+H(z)G(2)

B =A== g b= =)

(1—2 HZ A 12 [609)

Ex. Prove 1limHG(z)= G(s) for first orfer T.F.
A0

_y — Ayt — oAt (s+1/0)At
. e (1—e ) _ .. _—se +(s+1/De
£1g%)HG(z) = %1;% 1 — ¢ Sty —sd = gir(l) (s+1/7) ¢ TV

_ _S+S+1/T_ 1 ZG(S)

s+1/t Ts+1
N 1/ _
cf) %g%G(z)— %}g(]) | g Mt st = co+=G(s)
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Ex. 24.11

G(s)= XCs) _ 1 with ZOH — difference equation ?
X(s) s

Sol)

HG(z) = ZH(5)G()]=ZL (1—e ~*")/5"] =TA_ZL-11

-1
( 1 :AZ;)

= Yn = Y1 = At Xn-g

n
by long division, ynzAtgl x,_, (integrating element)

* High-Order System

o Y(s) Ke ¢ : ~
G(s) = X(5) = (Trst D(Tos+ D) with ZOH and time delay(NA4¢)

(b1+b22 71)271\]71
l+taz '+az 2

= G(Z) =

= apparent time delay is one sampling period longer.

24.5. Effect of Pole and Zero locations

- negative pole near unit circle has a pronounced effect
- ringing ' alternation in sign of y
(Poles are easy)

- But the zero location is unpredictable, mainly due to sampling effect
= No apparent simple relation

24.6. Conversion between Laplace and Z-Transform

- No ZOH is explicitly considered.
- Pade’s approximation

1 s 2=$A o 2 1=z
2TC T oAt T STA 142!

= Tustin’s method (bilinear transformation)
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- Power Series expansion

2 A
271=673At=1—sﬁz‘+*s7ﬁ— .....

-1
= zlx] A= = Jﬁ (Backward difference formula)

- Approximate Z-Transform

_1=z"1
Y

— 5 1)\?
=2 (15

3 2z ( 1—2_1)3

$ = (1+z7H At

- Boxer-Thaler

$io 12 ( 1—2"! )2
(1+10z2"'+279 At

S 2z ( l—z"! )3
(1+z7YH At
Ex. 24.12
PID Controller : G (s)= K (1 +JT? +7T,5) — obtain velocity form digital PID
I
-1
Sol) Using s;%
K(ay+az '+az %)
GC(Z): 0 1 — 2
11—z
d0:1+%1t+%1;
m=—+5E)
Tp
LZZZT[

let ¢, * error, p, * output from the controller

G=—L4
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(1—z YHP(2) =K/ (ay+aiz '+ ayz *)E(2)
=p,— b 1=0p,=Kaye,+Kae, +Kawe,
A T
Ap, =Kl (ey—e, )+ —Le,+2(e,—2e, 1+e, 2]
T, A¢
* Tustin transformation will not give the same form.
Chap. 25 Analysis of Sampled Data Control System
- Block multiplication is different from Laplace transform case!
25.1 Open-Loop Block Diagram Analysis
- Synchronous sampling or process input / output
X(9= 3 x(nbhe " 2 X _xo o] v X v
= X(s) At X*(s) Yis) At Y*(s)
. B Figure 25.1 Block diagram with sampled input and output signals.
X(2)= > x(nbp)z""

Y(s)=G()X (s)

V()= [G()X (] =G () X" ()
[The Proof of this is in Franklin & Powell, p86, using freq.-domain analysis]

Y(2)=G(2)X(z2)

* Pulse T.F. of Systems in Series

¥(s) = Gi(5) Go(8) X*(5) r——X-3%
#(0 X =t [y IICIN | 0
Y*(S) = [ Gl (S) G2(S)] *X*(S) X(s) A x| Vis) | Yis)

Figure 25.3 Two continuous systems in series with sampled input and output signals.

B — 26,9 6:91= 6162

( G,Gy(2)# G1(2) Go(2) in general)
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- If a sampler is in between G,(s) and G,(s),

Y(s) = Gy(s) V' () X
at Y8
V)= G (9 X,"(5) D, gEas [ |2 X L Iy

X(s) At X*(s) | Vis) At V(s) | Yis)

Figure 25.4 Two continuous systems in series with a sampler in-between.

= Y(s)=Gy(s) G;"(s) X;"(9),
= Y(9)= Gy (9) G"(s) X"(s), = Y(2)= Gy(2)Gi(2) X(2)

FD — 6,26,

Ex 25.1 Show that G,(z) G,(2) *+G,G,(2) if G,(z) and G,(z), both first-order models.

pf) Let GI(S)ZL and GZ(S):JZ— (T,#T,),

Tis+1 Tos+1
and g =¢ """ gy=e T,
kT ky/T
N __ RUY _ kol
Gi(2) (1—az™ )’ Gal2) (1—az Y
kiky/T T
Gy(2) G(2)= (l—alzl’lz)(ll—za?z’l)
also,
_ kiR
GZ(S) Gl(s)— (Tls-i—l)(Tzs-i— 1)

From the Table 24.1,
G2G1(2)=ZL Go(5) G1(9)] =
= GQ(Z) GI(Z)#:GzGl(Z)

kzkl(dz_al)z -1
(T,—1)(1—a;z DA—az Y

_ —shy¢
Ex. 25.2 Gl(s):H(s):Ji— and GZ(S):TSLJrl

x($) is a unit step input

= Examine the influence of the zero—order Hold. on y(¢t)

_ —sht
Sol) V(s)= Gy(s) X" (s)= 1 i l—iﬂAt:%

k1
Ts+1 s

Y(s) = Go(s) V(s) =

Y(s) for X*(s) gives same results as Y(s) for X(s) of unit step input.
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- For the case of sampling between G,(s) and G,(s)

Y9 =69 G (9X'(9 = (A (=) (1)

_J; . — 5Ot — 250t
=erp 1 (te e L )

Ex. 25.3 Gl(g:%, Gyls)=—=1— X(g:% with ideal sampler = y(f= ? for

2s+1°
0<t<6
2-
x
= if o
00 L é . ‘; L é Time
Time
« 2f
P x
*
T UL L L1 o | I I S I
O 2 4 6 . 8
Time Time

o

MoOoB oo
LLLLH,_
L~

LLI_I_I_’

0 2 4 6 .
Time Time
5 B
4F aF
nor CA
2F 2F l |
o 1 Il L 1 J 00 2 4
4] 2 4 ] T
Time fime
6
4+
Yz L
s
0 1 L L i )
4] 2 4 6
Time

(The last graph for y» is wrong!)
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y*(5)=5.91 v,"(5)=5.763
W) =Gy X (9=L—L1— V(9 = GU9X" (9= ——L—
s 1—e (1—e ™™
_ _ 1 1 _ 1 1
Y9 =Gyl N9 = s(2s+1) (1—e %) Y(9) = Gol9) V(9= 251 (1— ¢ s>
_¥ — sAt — 250t _ l —sAt — 250t 2
73(254_1)(1—*—@ te BNy L. ) =51 D (1+e Mte 2%+ .. )

= (142 M43 BN g B

T (2s+1)
* Pulse Transfer Functions of Systems in Parallel

C(s) = C1(8) + Co(9) = G () E*(5) + Go(s) E"(5)

* } che 1o % —c
)5 i [ | Cale

= C'(5)=[Gi(9)+ G ]E"(s)
= C(2)=[G,(2)+ Gy(2)]E*(2)

L5 =6+ 6

- Case of continuous load change

C(s) = Cy(s)+ Cy(s) = G1(s) E*(s) + G5(s) E(s)

C*'(s) = G"(E"(s)+ [Gy(s)E(s)]" e ) e
C(Z) = Gl(Z) E(Z) + G2E(Z) Ew_| % I o
Els) ,:‘ Cyla)
=

= No pulse transfer function.

25.2 Development of Closed-Loop Transfer Function

Lis)
Tt GL(S)
Clz)
—
At CHs)
Py(s) M Cls)
R A BN g b 22 He el 6 P 60 >
At Bxs) *(g) P*(s)
Biz)
B*s) At Bls) Cmls) =<

)
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) L(s)=0
B(s) = H()G,(8) Gy() G,() P*(s)
= B'(s)= [HG,G,G,] P*(s)
P(s) = GF(DE (= G, (s)[R*(s) B*(9)]

= G (IR (sr [HG,G,G,] P(s)]

oo G. () R(s)
Pl9=77 [HG,G,G,]" G (s

C(s) = H(5)G (s) G,(s) P*(s)
C'(9)= [HG,G,]"P(s)

(5= —LHG.GL G (9 R*(s)
1+ [HG,G,G,]" G (s

R*( s)=K,R*(s)

C's __ [HG,G)J G (DK,
R*(s) 1+ [HG,G,G,]1" GS(s)

In Z-Transform notation,

Clz) _ _ K,HG,G\(2)GL2)
R(z) 1+ HG,G,G,(2)G2)

The characteristic equation for the closed-loop control system,
1+ HG,G,G,(2)G(2)=0 (determines stability)
It G,(s)=K,,

i) R(s)=0

For simplicity, let G, (s)=K,,
B(s) = H(s)G(s) G,() K, ,P*(s) + G.(s) K,,L(s)
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and

C(s) = H(5)G (s) G,(s) P*(s) + G(s) L(s) o

C'(s)= [HG,G, )" P (s)+ [G.L]"

P(s)=— G.SB*(s) (" R(s) =0
O and @ — @ and solve for P*(s)

o G,L’
CO=TT K HG, G () G ()

C _ GLL(Z) . GLL(Z)
(D=T7K, HG, 62 G2 ~ 1+ HGZ) G.(2)

Because the disturbance L(s) is not a sampled signal, closed-loop pulse T.F. cannot

be found.

But the characteristic equations for set-point changes and load change are same

= Same stability analysis.

Ex. 25.4 For previous block diagram,

K,e °° K
___trp~ _ L _ .
G(s)= Tstl G.(s)= Tt 1 (1,=1,="1)
__ —sht
Cla=K, H=14—, G,=1. G,=1

© = NAr and N is integer
=Find (C(z) for load change and characteristic equation? ( R(s)=0, L(s)= %)

Sol)
_ Kp 1,_ K K
Z[GL(S)L(S)]—Z[TLS+1 s]_Z[ S s-l—l/T]
B 1 B 1 K (U-az"!
=Kl 11—z ! l—az ! 1= (1—z H(l—az™hH
x Let g=¢ M

ZLH(9)G(9)]=2 1_i_” Tfifl e ]

_ —Neb_ —(v+nsan L Ry
= (e ¢ s sl )
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=K,z "1—-=z ”)Z[% . %sﬁ]

_ -1 _
:KI,Z *N(I_Z*l) (1 a)Z :KPZ*N*14(_1_QL

(1—z Hl—az Y (1—az Y
K, (1—-az !
C(2) = 1=20=az""H _ K(l—-az!
1+ Z_N_IKCK,,(ll—a) (1—-z H(1l—az '+z V'K K(1-a)
l—az

_ KL(]._LZ)Zil
1-(14+a)z '+az "+KK(1-az " '-KK,(1-a)z "?

(Characteristic equation : the order of the equation depends on the time delay)

For Continuous System,

Kpe ™ o
Cs) _ s+l e KK,e
R(s) K,e ©° K Ts+1+K,K.e
Ts+1 ¢

Characteristic equation : Ts+]1+ K K e 95—

so+1+KKe = jiw+1+ K K,(cos 00— jsin Ow) =()
1+ K.K,cos Oo=( and 10— K K,sinbo=()

On — — 1 d cinOo— T
cos Oo K.K, and sinOw K.K,
= tan®w=— 10 = infinite # of solution (periodic)

(while the discrete characteristic equation has limited # of roots.)

Ex 25,5 For G,=K, , Gl)—*KJL G,=G,=1

TS+l
What is  lim C(#Af) for R(Z)zfzj?
N1
sol) HG(z)Zﬁp(la—)_Zl (a=e )
1—az
KK(l1—az !
Clz) _ l—az ! KK(1—az "

Rz~ KK(-az" T 14K K,(1—a)—alz !
l1—az !
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for the stable pole, |z " Y>1
|2l =K . K,(1—a)—a<1

1) KCKp(l_Cl)<1+Cl = KCKp< l_a

WKK(l-a>—(1—-a = K.K,y—1 (always satisfied due to negative
feedback)
¢ KE(TEE =00 as gol (A0)

~ if Ag>(), K. can be infinite

(continuous system of 1st order + P-control does not cause stability problem for any K.)

d1+a

l—a—)l as g (At—>oo)

For stable processes with a unit step input,

K.K(-a KK,
1+K.K(1—a)—a  K.K,+1

lim(1—z HC(z) =

As K, o, C(z)—1 which follows R(z)! Otherwise, shows offset. ( C(2)< R(z)).

25.3 Stability of Sampled-Data Control System

# Definition : A linear sampled-data system is stable if the output sequence { y(7Af)}

is bounded for any bounded input sequence { x(nAf)}. Otherwise, the
system is said to be unstable. (BIBO stability)

= No mention of the process response during the intersampled period (can be unstable
for continuous system)
It can be detected by changing sampling period or by using modified z-transform.

Asymptotically stable

Weakly stable

Bounded-input Bounded-state (BIBS) stable : stronger than the BIBO stable
Exponentially stable

Marginally stable
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* The necessary and sufficient condition for stability of a linear sampled-data
system.

1) i |g(nA¢t)| (oo (non-decaying response will be excluded!) or,
n=0

2) G(z) has no poles on or outside the unit circle in z-plane.

* Stability Test

1. Modified Routh Stability Criterion

- The bilinear transformation z= is not exact (z-plane to s-plane), but the

d1+tw
1—w

stability boundary is mapped exactly.

— Characteristic equation © I'(z)=¢,2"+a, 2" '+..... +az+ta;=0

= F(U)):ann"i' ;nflwnil‘l’ ..... + 211/0"’ 2020

(g, = real constant, Zi:/:ai, generally)

Stability condition : ( 4,50 w.lo.g.)

) a..... a, are positive

il) all elements in left column of Routh array are positive
= # of sign change = # of unstable poles.

Ex 25.6
[
T(2)=2z4+2+2+1=0 | 1 3
o dtw At w 1 tw _
T(w)_Z(l—w)+(1—w)+(l—w)+1_o | 7 5
| 16/7 0
= w+Tuw*+3w+5=0 | 5

= Stable (all elements in the first column are positive)
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2. Jury’s Stability Criteria
— Apply directly to polynomial in z (No # of unstable poles)

Stability Condition ( ¢,>(, g, are real)

<Jury Array>

D T'(z=1)>0 aa ... .. an

2) T(z=—1)y( for even n n Qo1+ - - . . ao
I'(z=—1)<0 for odd n bo b1 ... bni
ad<a, bn1 bao ... b;

|b0|>|b n*ll

3 lel>le,—s)  (n=1) Constraints e

) s rz r11p
|sol > 55l
So S1 S2

Total : (2n-3) rows

where — Q) Au—k — bO bn*k . — %0 73—
bk a, ap Ck bn bk S 3 7
Ex 257 T(2)=2z'—32°+2z—2+1=0
D&i) T'(1)=1>0, I'(=1)=9>0 (n = 4, even)
i) Juuy aamay @1 -1 2 -3 2 = 1< 2 (0k)
@2 -3 2 -1 1
®3 5 -2 -1 = 3 > 1 (ok)
@-1 -2 5 -3
® 8 -17 11 = 8 #* 11 (violated)
= Unstable

— If either first or last element is zero = Use special technique

3. Schur-Cohn Criteria

More complicated (About twice as many determinants must be calculated)
Ref. : Ogata. "Discrete-Time Control System”, 1987




Department of Chemical Engineering, Korea University
Digital Process Conftrol 33

* Special Case of 0 element in the first column for Routh array
- 0 means a pair of imaginary roots
- replace 0 to &, and proceed the calculation

- if above 0 and below 0 have sign change = consider as one sign change

S22+ s+2=0 s>+ 28t +24s + 485" - 255 - 50 = 0

[ [

|11 | 1 24 -25

| 2 2 | 2 48 -50 (—use as aux. polynomial)
| 0 (— replace with &) | 0 0

| 2 = P(s) = 2" + 48" - 50

- if any derived row has all zero elements, use auxiliary polynomials,
= two real roots with opposite sign radially and/or two conjugated imaginary roots

s>+ 25t +24s7 + 48s% - 25s - 50 = (s* - 1) (s* +25) (s + 2)

|

| 1 24 -25

| 2 48 -50 = P(s) = 25" + 485" - 50

| 8 96 & replace 0-row with dP/ds = 8s* + 96s
| 24 -50

| 112.7 0

|

-50

= 4th order auxiliary polynomial (2 pairs of radially symmetric roots)
+ 1 sign change (one root with positive real)

= a pair of conjugate imaginary roots
+ a pair of radially symmetric roots (one root with positive real)

= Deg (Aux. Polynomial)/2 = no. of pairs of radially symmetric roots

(The order of auxiliary polynomial will always be even!)

* If s=z—0 (o= constant)

We can test the roots which lie to the right of the vertical line s=—o0




